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MODE THEORY OF ELECTROMECHANICAL ENERGY CONVERSION IN 

PIEZOELECTRIC HATERIALS~ 

O.YU. SHARI1 

The method of eigenfunctions is generalized to the problem of dynamic 
electroelasticity /I/, which allows of a larger variety of physically 
realisable boundary conditions. Using the method of eigenfunctions a 
so-called mode theory of electromagnetic energy conversion is developed. 
Its basic idea is the establishment of a connection between the dynamic 
electromechanical coupling coefficient of the specified displacement 
field and the mode or partial electromechanical coupling coefficients of 
the individual modes of oscillation. The latter, being non-linear 
integral characteristics of normal modes, play the same fundamental role 
with respect to the first as the eigenfunctions (normal modes) play with 
respect to the overall solution of the electro-elasticity problem. The 
coefficients of the expansion in eigenfunctions of the displacement 
field which gives a maximum permissible value of the electromechanical 
coupling coefficient for a given geometry, position of the electrodes, 
and method of supplying and removing the electrical energy. 

1. For 

we will seek 

and, at each 
cal boundary 

Each of the R electrodes S, (v = 1,2, . . . . N)can be connected to a voltage generator - in 
this case the corresponding value ofIp,is known.If the value of the current through theelectrodt 
inparticular, is given, the current may be zero (a passive electrode), the unknown potential 

4% (f) is determined from the given value (equal to zero for passive electrodes) of the total 
charge 

the system of equations of motion of a piezoelectric medium /2, 3/ 

C&ll(;r,~j + e&J,kj + Fi -p&" -= 0, eiktuk,li-&$,ki = o (1.1) 

a solution up (2, t). Q (z, t) in a volume V, which satisfies the initial conditions 

ui (3, 0) = z&j0 (z), Uj' (I, 0) = ?.+d (s), 5 E Y W4 

point of the boundary S = S, -i- S* = S, "j- sp, one of the mechanical and electri- 
conditions 

It is best to use different systems of eigenfunctions, depending on the methods of 
connecting the electrodes, to solve problem (1.1)-(1.3). However, in all cases, following 
/l/, we have the same form of representations of the solution in the method of eigenfunctions 

where Up', y(m) are the solutions of the eigenvalue problem 
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?Z*Dl’“) = 0, 5 E s, 

corresponding to the eigenfrequencies &,,, while 'p is an unconnected potential, determined 

from the problem 

eS,cp,,,=o. SET;; cP=%@), XE% rc&cp,k = 0, 5 ES,. P-7) 

where for the same numbers of electrodes Y, for which Qy(t) (1.4) and the zero Qy' 
are given in (1.6), we have the conditions on the unbound charges QYU 

Above, in addition to the notation used in /l/, we have introduced the following: Tim' 
and Q$" are the potential and intrinsic coupled (polarization) charge, induced by the 
m-th eigenfunction on the y-th electrode, and 

zlj cm) - E UC") + e,,jyly), ol"'=eiklU~m~-eSkyY!~) - Gjkl x,, 

are the voltages and induction in the volume, corresponding to the m-th eigenfunction. 
The functions of time qm(i) in (1.5) are determined by the initial and boundary con- 

ditions 

It can be seen from (1.6) and (1.9) that when choosing the corresponding system of 
eigenfunctions, the unknown potentials qV((6) are multiplied by the zero QLm' and do not 
occur in the expression for q,(f). 

For a later discussion it is important to note that the scheme of the method of eigen- 
functions described stays the same in the case when several electrodes are short-circuited, 
for example, $1 =%a. The unknown quantity ,ql can be taken outside the summation sign in 
(1.9) if the system of eigenfunctions satisfies the conditions 

(II.) _ Yl _ yp', Qi"'+ Qp" =1 0 (1.10) 

All systems of eigenfunctions constructed for different methods of electrical loading, 
have the properties described in /I/. The choice of any of these,in a specific problem is 
determined by the method by which the electrical energy is applied and removed. 

If the piezoelectric coupling disappears, i.e. all the piesoelectric moduli eixi approach 
zero, then both the initial problem and the eigenfunction problem split into uncoupled 
mechanical and electrostatic problems. The mechanical problem, as before, has eigenvalues, 
and the solution for IL, retains its form, similar to the representation from the pure theory 
of elasticity. Nevertheless, the electrostatic "eigenvalue problem" does not contain a 
spectral parameter and does not have eigenfunctions, as a result of which all the y@O 
vanish. Hence, in its physical meaning and in accordance with the notation, as well as the 
method used in the method of eigenfunctions, the function ~(2, t) is a complete solution of 
the uncoupled electrostatic problem. 

This formulation of the method of eigenfunctions also holds in the case when some of the 
electrodes are situated in the volume of the piezoelectric material - it is only necessary 
to replace the formulae for the charges (1.41, (1.6) and (1.81, by calculating them from the 
change in electric induction on passing through the electrodes 12, 4/. 

Substituting the expansions (1.5) into the formula for the potential energy of a pieso- 
electric medium /2, 31 
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U = + (riietl $ E,D,)dV 

using the orthogonality of the eigenfunctions of the displacements /l/ and denoting by 'Pv 
the value of the free potential 4, on the v-th electrode, we obtain after the necessary 
reduction 

(1.11) 

The expression for the kinetic energy has the form 

2. To calculate the dynamic electromechanical coupling coefficient using the eiqenfunc- 
tion method we need to have relations between the values of the unbound charges Qv” and the 
values of 9~. Since the field of the free potential is electrostatic, these relations have 
the form 

Q,,” = v., cp+t p = I,& . . .g N 

where It cuy II is a symmetrical (N X N)-matrix of the static capacitances 151, the components 
of which can be found from the problem of the electrostatic loading of a piezoelectric material 
for constant strains, and can be assumed to be known. 

The sum of the unbound charges on the electrodes is always zero 

This follows from the Laplace Eq.(1.7), integrated over the volume V, and occurs as part 
of our assumption that there are no electric scattering fields outside the material /2, 41. 
Since condition (2.11 holds for any 'pv, it follows that the capacitance matrix 

5 q,,,=O, p=1,2 ,..., N 
v=, 

is degenerate. 
Sor example, for a two-electrode system (N = 2) the symmetrical degenerate matrix 

contains one independent element, called the capacitance 6' 

while the unbound charges are proportional to the potential differences 

Qz'= -Qs* = C (n - ~4 (2.2) 

3. Consider a two-electrode piezoelectric material, the distribution of the strains in 
which is completely defined by the expansion coefficients q,,, of Uj"' in a system of eigen- 

functions, obtained for short-circuited electrodes, i.e., when (1.10) is satisfied for all m. 
Following the energy definition 121, for the electroelastic field with displacements 

Ui = z; upq, (3.1) 

we obtain the potential energy for open-circuited electrodes (U"') and short-circuited 
electrodes (u=) and then the dynamic electromechanical coupling coefficient kdp from the 
formula 

kdz = (lP - iJ”“)Kl”” (3.3) 

Here and everywhere later, unless otherwise stated, the summation is over m from m=l to eo. 
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According to the eigenfunction method, the solution for the electric potential 'Ip is 
given by the second equation of (1.5) and as Ytrn) and q,,, are known, the values of cp for 
the open-circuit and short-circuit states are completely defined. However, to calculate kd’ 

we only need to know the difference 91 -'pa. We will write (l.ll), taking (2.2) into account 
in the form 

(3.3) 

For open-circuited electrodes (Q1 = Qs = (4, it follows from the second equation of 
(1.5) and from (1.10) that 

9, -$a = 91 - 'pt 

while the relation obtained from (1.5) 

Qv = Qv” + i8Qt”‘qrn 

gives 

Q1" = -XQt%m 

Substituting (3.4) into (3.3) and using (2.2) and (3.6), we obtain 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Assuming now that the electrodes are short-circuited (Y1 -gs = 0), we obtain from (1.5) 
and (1.10) 'pr - 'pl = 0, and (3.3) leads to the equation 

P = ;c Q,‘q,* (3.8) 

From (3.21, (3.7) and (3.8) we obtain 

&‘/(I - W) = (2 Q?%m)* (C x %“qm*)-’ (3.9) 

The values of the electromechanical coupling coefficient for the m-th mode of oscillation 
k,,,¶ can be obtained by assuming that all q,,, in expansion (3.11, apart from one, are zero. 
These partial or mode electromechanical coupling coefficients are given by the equations 

k,V(l - k,*) = Q:““” (CC&,,*)-l, m = 1, 2, . . , (3.10) 

Eliminating from the last two equations the values of the natural charges Q!"', we obtain 
the required relationship between the electromechanical coupling coefficient for arbitrary 
strain and the electromechanical coupling coefficients of the individual normal modes 

'@/(I -ki") = (%Lq,k,/1/1 --k,,2 )a(_%L,2gn:)-* (3.11) 

The last equation enables us to estimate the maximum electromechanical coupling coef- 
ficient obtained for a given arrangement of the electrodes: from Cauchy's inequality 

kdV(i - kda) Q ~k,,,‘V(l - k,2) (3.12) 

The equality sign in (3.12) holds when C&q,,, = Ak,ll/i - k,‘, where A is an arbitrary 
constant, independent of m. The corresponding maximum value of the electromechanical coupling 
coefficient (the left-hand side of (3.12) is an increasing function of kd”) is reached for 
displacements 

u, = A x Q,-’ (k&l - km*),+“‘) (I) (3.13) 

As follows from Sect-l, the displacement field can be represented in the form of an 
expansion in another system of eigenfunctions, obtained for open-circuited electrodes, when 
(1.10) is replaced by the equations 

Qj"' = 0, Qi"'"' = 0 (3.14) 



270 

Suppose (3.1) represents this expansion; then for open-circuited electrodes (QI = QB = 0,) 
it follows from (3.14) and (3.5) that 0,” = 0, ana (3.3) gives for UN an expression 
identical in form with (3.8), but with other values of a, and qm. 

For short-circuited electrodes, by setting up the difference 'pl - (pa, by using the 
second equation of (l-5), when $1-$)s = 0 we obtain the relation 

91 - 'p* = - x(yg) - y$$')qm 

the substitution of which, in combination with (2.2), into (3.3) gives i_P, while the 
electromechanical coupling coefficient calculated from (3.2) is 

Now setting up, in the same way as (3.10), an expression for the partial electromechanical 
coupling coefficient k,,,$ and eliminating Yim' - Yim', we obtain the relation between kd= 
and the electromechanical coupling coefficient of the normal modes, corresponding to open- 
circuited electrodes 

kd2 = (%&,~',,k,)~ (z?~%~q,*)-~ (3.15) 

By estimating the right-side of (3.15) using the Cauchy inequality, we obtain in this 
case 

kdZ < 2 km= (3.16) 

while the displacements which give the maximum electromechanical coupling coefficient (the 
equality sign in (3.16)) can be represented by the expansion in eigenfunctions 

The basic idea of the energy method of determining the dynamic electromechanical couplinq 
coefficients is the fact that this characteristic should be completely defined by the defor- 
mation (displacement) field in the volume of the body and the arrangement of the electrodes 
/2/. Definition (3.2) is comprehensive in the case of two electrodes due to the fact that 
there is only one method of converting a piezoelectric body from an electrically open-circuit 
state to a short-circuit state. The use of this fora multi-electrodebody gives an ambiguous 
result, Thus, for a three-electrode body we can arrive at a state with three short-circuited 
electrodes by connecting a third electrode to the two previously short-circuited electrodes, 
or simultaneously short-circuiting all three electrodes. The values of kdB calculated from 
(3.2) turn out in this case to be different. 

There is no definition of the electromechanical coupling coefficients of a multi-electrode 
body, going by the literature 12, 3/, and to introduce it we were guided by the following 
considerations. For the appropriately calculated electromechanical coupling coefficients it 
is desirable that the structure of (3.11) and (3.15), containing only eigenfrequencies, the 
coefficients of the expansions in eigenfunctions and the partial electromechanical coupling 
coefficients should be preserved, i.e. it should not depend on the number of electrodes. 
Here it should be noted that they can be obtained by simultaneous elimination, for example, 
from (3.9) and (3.10), of both the bound charges Qp-) , and the capacitance C. For an N- 
electrode body (N>3) to change from a completely open-circuited state to a completely 
short-circuited state in the expression for kda and k,,* we take into account '/,N (A' - i) 
independent components of the capacitance matrix and N - 1 charges Qt”‘, V which makes such 
simultaneous elimination impossible. 

On the other hand, in the majority of piesoelectronic devices /3/, the energy at each 
instant of time is removed from a single pair of electrodes, where the idea of an "electrode" 
includes several constructively short-circuited electrodes. Thus, the electromechanical 
coupling coefficients of a (%+z)-electrode cylinder /2/ is in fact calculated on the 
assumption that no redistribution of the potentials occurs when the electrodes are successively 
short-circuited, i.e. they are short-circuited through one, as occurs in the multilayer 
transducers used in practice. Hence, such a transducer is essentially a two-electrode device. 
Moreover, one must take into account in the definition of the electromechanical coupling 
coefficient that the energy to be converted is extracted by short-circuiting a pair of 
electrodes, and the possible redistribution of energy between the body and the generators 
through the remaining electrodes must be eliminated from consideration. 

By turning our attention to the physically realizable methods of extracting electrical 
energy, the electromechanical coupling coefficients of a multi-electrode body will be calculated 
from (3.2) for a pair of electrodes, assumed to be open-circuited or short-circuited for 
specified displacements in the volume. Here we require to preserve the zero values of the 
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potential on the electrodes the voltage connected to the generators and the zero on the 
electrodes supplied by the current generators or on the passive electrodes. Writing the 
theorem on the change in total energy (f4f, Eq.(25.6)), for zero velocities, i.e. unchanged 
strains in the volume 

we see that the flow of energy through the electrodes with zero qV or Qy is zero. 
Consider an N-electrode body in which the electrodes with numbers ~=3,4,...,M are 

supplied by voltage generators, while those with numbers Y = M + 1, M + 2, ..,, N are 
supplied by current generators or are passive. We will obtain a solution of the initial- 
boundary value problem (1.1)-(1.4) in the form (1.5). Here we will use the system of eigen- 
functions, defined from the conditions 

uls'"' = 0, Y = 3,4, . , ., M; Qt”” = 0, v = M + 1, M + 2,. . ., N 

On the first two electrodes, for which the electromechanical coupling coefficient is 
calculated, the eigenfunctions satisfy either (1.10) or (3.14). 

Keeping, at the instant when the body is transferred from the open-circuit to the short- 
circuit state, 

*V = 0, v = 3, 4, * . ., W Qv = 0, v = M + 1, M + 2, . . . . N 

we obtain 

* = 0, v = $4, 1 1 .) M; Qv“ = 0, v =;M + 1, M + 2, . . _, N 

and the formula for the energy (1.11) takes the form 

Assuming Q1 =Qa = 0, we obtain DC. When calculating USC, in addition to I$~-_~ = 0 
we must use the condition QI +Qa = 0, which denotes that no extraneous charges have been 
introduced. Note that for N = 2 the last equation is satisfied automatically, and hence 
is not formulated in explicit form. 

Just as for a two-electrode body, the quantities Q," and 'pt--'pp turn out to be 
connected by relations (2.2) with the sole difference that C now denotes a certain positive 
combination of elements of the capacitance matrix. Hence, the formulas for kdp and k,,,= and 
the relations between them retain their form. 

Of the two possible methods of electrical excitation of the first and second electrodes, 
one is usually employed in practice. Corresponding to this, in specific problems the maximum 
achievable electromechanical coupling coefficient can be found either from (3.12) or from 
(3.16), but the result of course is the same. The choice of the conditions for the eigen- 
functions on the first and second electrodes is made from considerations of simplicity in 
finding the eigenfunctions (see the example). 

Formulas (3.12) or (3.16) also enable us to estimate the maximum electromechanical 
coupling coefficients when the number of excited modes is limited, and to determine the ratio 
of the amplitudes of the individual modes which give the value of the electromechanical 
coupling coefficient that is closest to the maximum, including in non-stationary problems 
also. 

4. The application of the proposed theory to determine the maximum electromechanical 
coupling coefficients and the corresponding distributions of displacements to a longitudinally 
and transversely polarized rod, and also to a piezoceramic disc that is thickness-polarized 
confirmed well-known results: these electromechanical coupling coefficients are equal to the 
static values &t'. &X$ and k,,* /2/ and they are obtained in uniform deformations. 

A more complex example, in which the result was not known in advance, requires a con- 
sideration of a four-electrode disc piezoelectric transducer of thickness h and radius a with 
a free contour, the continuous electrodes of which are cut over circles of radius b<n. 
Suppose the piezoelectric transducer is excited by a potential difference applied to the 
central electrodes Q<r<b, and the energy is removed from ring electrodes b<r<a. We 
will determine the partial (km’) and maximum electromechanical coupling coefficients for 
constantly short-circuited central electrodes. 

It is obvious that in this problem a simpler system of eigenfunctions will be that 
obtained for short-circuited external electrodes: they are identical with the eigenfunctions 
of a disc with continuous electrodes. The eigenfrequencies 9,= x.,c, where e is the plate 
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velocity (/2/, p.99), are defined by the positive roots of the equation 

xal, (XU) - (i -v) I, (x0) - 0 (4.1) 

while the orthonormalized eigenfunctions /l/ are given by 

u, = (2nph)-%&J1 (x,r) 

AnI = ['/a (x.?& (I,' (x,0) + 111 (&+l,a)) - (1 -v) IX' (xma)l-“’ 

The maximum achievable electromechanical coupling coefficient.is qiven by the sum of 
the series 

(4.8) 

the terms of which are equal to k,2/(1-kk,z). This is achieved for displacements u calculated 

according to the rule (3.13) (an unimportant constant factor is omitted) 

u = %, Ia& (%,a) - bJ, hW~ Mm4 (4.3) 

Rewriting the frequency Eq.(4.1) in the form xol,' (xa) + vr, (x.) = 0, it can be shown that 
(4.3) is the expansion of the required displacement in a Diny series /6/, the sum of which is 

equal to 

.=~[~,,-.),+(,-.4)X(~-b)]. t=$ 

where H is the Heaviside unit function. 
The displacement field which provides a maximum electromechanical coupling coefficient 

under the internal electrodes (O<r< b) is a linear function, while that under the rinq 
electrodes (b<r<a) is a combination of a linear function and a function inversely pro- 
portional to r. It would have been difficult to foresee this from elementary considerations. 

Comparing (4.2) and (4.3) we see that the first sum is proportional to LIU (a) - bu (b), 

whence we obtain 

The right-hand side of the last equation is a decreasing function of the qeometrical 
parameter e. The limiting value k&., for the material PZT-4 /2/, v=O.3, is k,,= = 0.34 

for e=O (uniform deformation of a disc with two continuous electrodes) is equal to k,’ for 
a=4 (infinitely narrow ring electrodes), and J&_ is a minimum and equal to 0.74 k,‘. 
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